
Contents
1. Square Game Writeup - L3akCTF ... 1
1.1. Challenge Introduction .. 1
1.2. Example Game ... 1
1.3. Developing a Strategy .. 2

2. Guessing a secret number ... 2
2.1. Algorithm .. 3
2.2. How to store the feasible region .. 3
2.3. Line solve script ... 4

3. Returning to the Grid .. 6
3.1. Takeaways ... 9

1. Square Game Writeup - L3akCTF
First off, huge thanks to the team behind L3akCTF for some cool challenges.

1.1. Challenge Introduction
We are studying a 2 player game played on an 𝑛 × 𝑛 grid. Before the game starts, Player 1 picks one
of the 𝑛2 points, and keeps this point 𝑞 secret. Each turn, Player 1 picks a new public point 𝑝1 =
(𝑥, 𝑦) uniformly at random, and communicates it to Player 2. Player 2 replies with a radius 𝑟1.
Player 1 checks (privately) if their private point is in the square centered at 𝑝1 with radius 𝑟, and
sends Player 2 the boolean result. This goes back and forth for 100 turns: Player 1 sending point 𝑝𝑖,
Player 2 responding with a radius 𝑟𝑖, and Player 1 checking if 𝑞 is in the corresponding square.

After the hundredth turn, Player 2 has to guess Player 1′s private point 𝑝. If they are close (with 1%)
to 𝑝, they win. To solve this, we are going to apply a binary search, picking radii 𝑟𝑖 such that we
eliminate approximately halve of the remaining cells each turn. To build up to this solution, we’re
going to start by walking through an example game, strip the game down to guessing a secret
number, and build up our binary search algorithm from there.

1.2. Example Game
For our example, we’re going to play on a 6 × 6 grid for 5 turns.

Figure 1: The board state on turn 0, with secret point (2, 3)

Player 1 starts by picking the private point (2, 3). On turn 1, Player 1 picks a random point 𝑝1 =
(4, 5). Player 2 picks a radius of 𝑟1 = 2, and Player 1 responds by saying that 𝑞 is in that square.
From this, Player 2 learns that the point isn’t outside this square, so they color cells 𝑐 inside the
square, that is ‖𝑝 − 𝑐‖1 ≤ 𝑟, blue (meaning those cells are feasible cells for 𝑞 to be in), and all squares
outside the square red.

On turn 2, Player 1 picks a random point 𝑝2 = (6, 2), Player 2 responds with a radius of 𝑟2 = 2, and
Player 1 responds by saying that 𝑞 is not in that square. From this Player 2 knows that it’s in the
square centered at 𝑝1 with radius 𝑟1, but not in the square centered at 𝑝2 with radius 𝑟2, leaving a
polygonal region of remaining points.

Figure 2: The board state after turns 1 and 2.

This continues back and forth, Player 1 picking a point, Player 2 picking a radius, and Player 1
checking if 𝑞 is in that square. The five turn case is feasible to play by hand with our nice graphic. In
the challenge, 𝑛 = 109 and we play for 100 turns, so it’s not going to be practical for us to play this
way by hand. Therefore, we need some automated approach.

1.3. Developing a Strategy
Each turn, we get to check a square of the grid to see if the secret point 𝑞 is in that square. This
means that on turn 𝑖, we can compute the region of remaining points 𝑞 can be on, the so called
feasible region of the board, by taking the intersection of the regions from each turn. To develop a
strategy, let’s back up a bit to study an easier version of square game.

2. Guessing a secret number
Instead of the 𝑛 × 𝑛 grid, what if we have Player 1 pick a random number 𝑞 from 1 to 𝑛. Each turn,
Player 2 is going to be allowed to pick an interval [𝑎, 𝑏], and Player 2 responds if 𝑞 is in that interval.
What is Player 2′s strategy?

The easiest way forward is to just binary search: on turn 1, we check the interval [𝑛2 , 𝑛]. If the point
isn’t in this interval, we know it’s in [0, 𝑛2]. At each turn, Player 2 cuts the number of feasible cells
in half: turn 1 there are 𝑛 feasible cells, turn 2 there are 𝑛2 feasible cells, then 𝑛4 on turn 3, and so on.
Extrapolating, we see that there are 𝑛

2𝑖−1 feasible cells on turn 𝑖, meaning that there will only be 1
cell remaining when

𝑛
2𝑖−1

= 1 ⇒ 𝑛 = 2𝑖−1 ⇒ 𝑖 = log2(𝑛) + 1.

This is a much easier problem than the square game, but we are going to take the same approach to
guessing our hidden point. Let’s ungeneralize a little bit by giving Player 1 the power to randomly
pick the center 𝑝𝑖 of our interval, and letting Player 2 pick the radius 𝑟𝑖 of the interval. Player 2 is
going to take the exact same strategy: each turn, pick a radius 𝑟𝑖 such that half of the feasible region
is in 𝐼 = [𝑝𝑖 − 𝑟𝑖, 𝑝𝑖 + 𝑟𝑖], and half of it is outside. To convince ourselves that we can do this,
observe that when 𝑟𝑖 = 0, at most 1 cell of the feasible region is in 𝐼 = [𝑝𝑖, 𝑝𝑖], and when 𝑟𝑖 = 𝑛, all
possible values for 𝑞 are in 𝐼 = [0, 𝑛]. If we increment 𝑟𝑖 → 𝑟𝑖 + 1, there are at most 2 new feasible
cells in our interval for each increment, so there is some radius 𝑟𝑖 that gets about half of the
remaining feasible cells.

At the end Player 2′s final turn, they have to guess some point. A possible strategy is to pick the
midpoint of the feasible cells that we are left with, but we are going to see later that we narrow our
search space enough that any point we’re left with will work (unless we get really unlucky).

2.1. Algorithm
Player 2′s strategy is then as follows:

Initialize the feasible region as [1, 2, ..., n]

low, high, r = 0, n, 0
for i in range(num_turns):
 Set r = (high + low) // 2

 Obtain random point p_i from Player 1
 for k in range(log2(n)): # Binary search has depth log2(n) by above
 compute the intersection of the feasible region and [p_i - r_i, p_i + r_i]
 count the number of cells in the intersection
 if the number of cells is about half of the feasible region:
 break
 if it's less than half:
 low = r - 1
 if it's more than half:
 high = r + 1

 Ask Player 1 if q is in [p_i - r_i, p_i + r_i]
 Update the feasible region

Guess the hidden point q

2.2. How to store the feasible region
What remains is to figure out how to store the feasible region. For small enough 𝑛, we can create an
array of binary values, where 0 means the cell can’t contain 𝑞 and a 1 means it could contain 𝑞.
However, for large enough 𝑛, this is not feasible, as we will run out of memory on our computer.
When 𝑛 = 109, storing a bit for each integer 1 to 𝑛 is on the order of 100MB. For the 𝑛 × 𝑛 grid,
that’s over a hundred PB, which (unless you have plenty of hard drive space to loan me) is not
happening.

One possible approach is to use two interval trees, one for intervals that contain 𝑞, and the other for
intervals that don’t contain 𝑞. At each iteration, we intersect the intervals in “hit” tree, union and
then complement the “miss” tree, and intersect the two results. However, the interval tree approach
may encourage a feasible region of many small, disjoint intervals. If these intervals are scattered

https://en.wikipedia.org/wiki/Interval_tree

across the number line, that’s no good for making a guess, since we have no idea which chunk might
contain 𝑞, and are left to a coinflip. Instead, we’d like a strategy that promotes keeping a connected
feasible region at all times, so that we can leverage the 1% tolerance that Player 1 gives us.

Figure 3: Both game boards have three feasible cells. However, one is connected, where as the other
is sparse, meaning if we guess with a tolerance of 1, we are guaranteed to win on the first, but have

1/3 chance on the second.

While a generalized polygon library would get us the most bang for our buck per iteration in terms
of minimizing the feasible area as fast as possible, the above example shows that minimizing area is
not always best. Thankfully, we are allotted enough turns that applying interval trees or tracking
generalized polygons will get us down to a single cell in the interval case, it is yet to be shown that it
will work out as cleanly in the grid case.

The strategy we are going to roll with (at least for now) is to only update our feasible region when
we get a hit. Our feasible region starts as a connected interval [1, 𝑛]. At some point, we get our first
hit on interval [𝑝𝑖 − 𝑟𝑖, 𝑝𝑖 + 𝑟𝑖]. Since we know the point is in both intervals, it must be in the
intersection. The intersection of two connected intervals is connected, so our update to the feasible
region is connected. Inductively, we start our turn with a connected interval, check a connected
interval, and either don’t update or take the intersection of two connected intervals. Since, on each
turn, we cut the feasible region in half, so we expect to get a hit every other turn and (in
expectation) it takes 𝑂(log 𝑛) turns to find the point 𝑝. Sure, the complicated solution may be more
“iteration efficient”, but if this gets us a solve then it’s good enough for our usage.

2.3. Line solve script
line_utils.py

def get_endpoints(x, r, n):
 """Gets the endpoints of the interval centered at x with radius r.
 Restricts interval to the n cell line"""
 x1 = max(x-r, 0)
 x2 = min(x+r, n-1)
 return x1, x2

def get_intersection(x1, x2, x3, x4):
 """Given the bottom left and top right corners of two rectangles,
 return the corners of their intersection."""
 x5 = max(x1, x3)
 x6 = min(x2, x4)

 return x5, x6

def compute_length(x1, x2):
 """Computes the length of an interval :)"""
 return x2 - x1

def check_in_interval(center, radius, point):
 x_min = center - radius
 x_max = center + radius
 return x_min <= point <= x_max

line.py

import numpy as np
from line_utils import *

epsilon = 0.01
n = 1000000

for i in range(1000):
 print(f'Game {i+1}')

 q = np.random.randint(n)
 x1, x2 = 0, n - 1

 for j in range(100):
 print(f'Round {j+1}')

 p_i = np.random.randint(n)
 print(f'Randomly sampled point is {p_i}')
 # Compute the area of the current feasible region to initialize binary search
 original_length = x2 - x1
 new_length = 0
 low, high, r_i = 0, n, 0

 counter, threshold = 0, np.log2(n)
 print(original_length, new_length)
 while np.abs(new_length * 2 - original_length) > n * epsilon:
 r_i = (low + high) // 2

 x3, x4 = get_endpoints(p_i, r_i, n)
 x5, x6 = get_intersection(x1, x2, x3, x4)
 new_length = compute_length(x5, x6)

 # Prints for debugging
 print(f'Endpoints of possible interval: {x3, x4}, r: {r_i}')
 print(f'Endpoints of intersection interval: {x5, x6}')
 print(f'Original length: {original_length}, new length: {new_length}')
 print()

 if new_length * 2 < original_length:
 low = r_i - 1
 else:
 high = r_i + 1

 # See if the process hangs
 counter += 1
 if counter > threshold:
 break

 # Send r
 # Check if the hidden point is in the square we selected

 print(f'Selected radius {r_i}.')
 print(f'Original length was {original_length}, new length is {new_length}')
 # Get the corners again in case look didn't run
 x3, x4 = get_endpoints(p_i, r_i, n)
 # Check if the point is in our square
 if check_in_interval(p_i, r_i, q):
 print('The point is inside the interval!')
 x1, x2 = get_intersection(x1, x2, x3, x4)
 else:
 print('The point is outside the interval.')

 # Make our guess, sand it, and compare to the actual hidden point
 guess = (x1 + x2) // 2
 print(guess, q)
 distance = np.abs(guess - q)
 print(f'Guessing {guess}, which is {distance} away from the secret point {q}.')
 if distance <= epsilon * n:
 print('Correct!')
 else:
 print('Incorrect.')
 break

3. Returning to the Grid
Now that we have solved the guessing game for the line, making a solution for the grid will just
mean storing corners of our feasible rectangle rather than endpoints of the feasible interval,
exchange length for area, and changing how we compute intersections. The key insight that we
carry over from the interval to the grid is that it’s best to always store a connected feasible region, as
the interval tree approach becomes rather gnarly once we start working with many-sided polygons
that might snake through the grid. Storing this additional complexity is ultimately not useful for us,
as we can get away with maintaining a single rectangle at all times.

Because a rectangle is the product of two intervals, the intersection of two rectangles is the product
of the intersection of the intersections of the intervals:

([𝑥1, 𝑥2] × [𝑦1 × 𝑦2]) ∩ ([𝑥3, 𝑥4] × [𝑦3, 𝑦4]) = ([𝑥1, 𝑥2] ∩ [𝑥3, 𝑥4]) × ([𝑦1, 𝑦2] × [𝑦3, 𝑦4]).

In human language, the intersection of two rectangles is a rectangle. We’ve effectively reduced the
intersection problem on the grid to doing the intersection problem on the interval twice, which is a
problem we’ve already solved. Therefore, a convenient way to store rectangles to make intersection
easy is to parameterize them by their bottom left and top right corners, so that the corners of their
intersection can be computed as follows

def get_intersection(x1, y1, x2, y2, x3, y3, x4, y4):
 """Given the bottom left and top right corners of two rectangles,
 return the corners of their intersection."""
 x5 = max(x1, x3)
 y5 = max(y1, y3)
 x6 = min(x2, x4)
 y6 = min(y2, y4)

 return x5, y5, x6, y6

From here, the grid solution is just a smooth generalization. Substituting Player 1′s actions for
talking to netcat via pwntools, we have the following solution:

https://proofwiki.org/wiki/Cartesian_Product_of_Intersections
https://proofwiki.org/wiki/Cartesian_Product_of_Intersections

utils.py

def get_corners(x, y, r, n):
 """Gets the bottom left and top right corners of the square centered at x
 with radius r. Restricts square to the nxn grid"""
 x1 = max(x-r, 0)
 y1 = max(y-r, 0)
 x2 = min(x+r, n-1)
 y2 = min(y+r, n-1)
 return x1, y1, x2, y2

def get_intersection(x1, y1, x2, y2, x3, y3, x4, y4):
 """Given the bottom left and top right corners of two rectangles,
 return the corners of their intersection."""
 x5 = max(x1, x3)
 y5 = max(y1, y3)
 x6 = min(x2, x4)
 y6 = min(y2, y4)

 return x5, y5, x6, y6

def compute_area(x1, y1, x2, y2):
 """Computes the area of a rectangle :)"""
 return (x2 - x1) * (y2 - y1)

def check_in_square(center, radius, point):
 x_min = center[0] - radius
 x_max = center[0] + radius
 y_min = center[1] - radius
 y_max = center[1] + radius
 return x_min <= point[0] <= x_max and y_min <= point[1] <= y_max

solve.py

import numpy as np
from utils import get_corners, get_intersection, compute_area
from pwn import *

epsilon = 0.01
n = 1000000

conn = remote('34.139.98.117', '6668')

print(conn.recvuntil('100\n\n\n'))
print('\n\n')

for i in range(10):
 print(f'Game {i+1}')
 x1, y1 = 0, 0
 x2, y2 = n - 1, n - 1

 for j in range(100):
 print(f'Round {j+1}')

 # Read in the random point (x, y)

 conn.recvuntil('(')
 p_i = map(int, conn.recvuntil(')').decode()[:-1].split(', '))
 x, y = p_i
 print(f'Randomly sampled point is ({x}, {y})')
 # Compute the area of the current feasible region to initialize binary search
 original_area = compute_area(x1, y1, x2, y2)
 new_area = 0
 low, high, r_i = 0, n, 0

 counter, threshold = 0, np.log2(n)
 while np.abs(new_area * 2 - original_area) > n * epsilon:
 r_i = (low + high) // 2

 x3, y3, x4, y4 = get_corners(x, y, r_i, n)
 x5, y5, x6, y6 = get_intersection(x1, y1, x2, y2, x3, y3, x4, y4)
 new_area = compute_area(x5, y5, x6, y6)

 # Prints for debugging
 print(f'Corners of possible square: {x3, y3, x4, y4}, r: {r_i}')
 print(f'Corners of intersection rectangle: {x5, y5, x6, y6}')
 print(f'Original area: {original_area} and new area: {new_area}')
 print()

 if new_area * 2 < original_area:
 low = r_i - 1
 else:
 high = r_i + 1

 # See if the process hangs
 counter += 1
 if counter > threshold:
 break

 # Send r
 conn.recv()
 conn.sendline(str(r_i).encode())

 # Check if the hidden point is in the square we selected
 print(f'Selected radius {r_i}.')
 print(f'Original area was {original_area} and new area is {new_area}')
 # Get the corners again in case look didn't run
 x3, y3, x4, y4 = get_corners(x, y, r_i, n)
 # Check if the point is in our square
 membership_query = conn.recvline().decode()
 print(membership_query)
 if 'inside' in membership_query:
 x1, y1, x2, y2 = get_intersection(x1, y1, x2, y2, x3, y3, x4, y4)

 # Make our guess, sand it, and compare to the actual hidden point
 x, y = (x1 + x2) // 2, (y1 + y2) // 2
 print(conn.recv().decode()[2:-2])
 print(f'Guessing ({x}, {y})')
 conn.sendline(f'{x},{y}'.encode())
 # Read the results
 outcome = conn.recvline().decode()
 print(outcome)

 # Sometimes we get unlucky
 assert 'Incorrect' not in outcome, "Guessed wrong, rerun the script"
Other times we don't :)
conn.recvuntil("Congratulations, you've done it. ".encode())
print(conn.recvuntil('}'.encode()).decode())
conn.recv()
conn.close()

which, when run, nets us the flag:

L3AK{5qu4r35_574y_5h4rp}

3.1. Takeaways
Fancier solutions ≠ better solutions. Sure you can use some fancy data structure to score the whole
polygon of remaining cells at each iteration, but you can write a pretty simple solve from scratch
that only stores a rectangle at all times. Your fancy data structure might save iterations, but that may
come at a cost of a huge space blow up. This approach is easier to implement and analyze, only ever
uses constant space, and is easily extensible in higher dimensions (as shown by how easy our
generalization was from the line to the grid).

	Square Game Writeup - L3akCTF
	Challenge Introduction
	Example Game
	Developing a Strategy

	Guessing a secret number
	Algorithm
	How to store the feasible region
	Line solve script

	Returning to the Grid
	Takeaways

