
Never Gonna Let You Crypto - GPN CTF 2024
This is the introductory crypto challenge from GPN CTF 2024. The challenge revolves around
leveraging the associativity and self-inversion of the xor operation to recover a randomly generated
key, and use it to decrypt the flag

Challenge Overview
Title: Never Gonna Let You Crypto
Author: s1nn105
Difficulty: Beginner
Points: 56
Solves: 430
Flag: GPNCTF{One_T1me_p4ds_m4y_n3v3r_b3_r3u53d!!!}

Reading through the challenge
We are provided with 2 files: chall.py, which contains our encryption scheme, and FLAG.enc, which
is our encoded flag.

chall.py
chall.py encrypts a message by generating a random 5 byte key, and xoring the message with the
key in 5 byte chunks.

import os
def encrypt(message,key):
 message = message.encode()
 out = []
 for i in range(len(message)):
 out+= [message[i]^key[i%len(key)]]
 return bytes(out).hex()
FLAG = "GPNCTF{fake_flag}"
key = os.urandom(5)

print(encrypt(FLAG,key))

The FLAG variable contains a fake_flag, but we’re assuming that the original source just has the real
flag there in plaintext. The xor’d message is a list of integers, which are first converted to bytes and
then to hex, which is then printed.

Observe that the key is randomly generated, so we can’t hope that running our program will get
their key. We would bruteforce the key, but there is going to be a better way.

FLAG.enc
This file just contains the encrypted flag, which we know from the above source is a hex string:
d24fe00395d364e12ea4ca4b9f2da4ca6f9a24b2ca729a399efb2cd873b3ca7d9d1fb3a66a9b73a5b43e
8f3d.

Leveraging properties of xor
The xor takes in two input bits, and outputs a single bit that is 0 if the inputs are equal, and 1 if the
inputs are not equal. For example, 1 xor 0 = 1, and 1 xor 1 = 0. xor is typically denoted with the
oplus symbol ⊕, and in python is the caret operator ^. ⊕ is an operation on bits, but we can define
the xor of two bit strings of the same length as just xoring their corresponding bits. To xor two
ASCII strings, just xor them as bit strings.

⊕ is useful for encryption since it’s a self inverting operation: if I encrypt 𝑥 with key 𝑦, I can decrypt
𝑥 by xoring again by 𝑦. To show this, first observe that xoring any value with itself will always give
a string of all 0s, since 0 ⊕ 0 = 1 ⊕ 1 = 0. Second, xoring any string with a string of all 0s gives the
string back, since 1 ⊕ 0 = 1 and 0 ⊕ 0 = 0. Third, observe that xor is associative, meaning for any
bits 𝑥, 𝑦, 𝑧 we have

(𝑥 ⊕ 𝑦) ⊕ 𝑧 = 𝑥 ⊕ (𝑦 ⊕ 𝑧).

Now, assume that I am given encrypted text 𝑧 = 𝑥 ⊕ 𝑦, and know the key 𝑦. I can recover 𝑥 by as

𝑧 ⊕ 𝑦 = (𝑥 ⊕ 𝑦) ⊕ 𝑦 = 𝑥 ⊕ (𝑦 ⊕ 𝑦) = 𝑥 ⊕ 0 = 𝑥.

From this, we deduce that 𝑥 ⊕ 𝑦 = 𝑧 ⇔ 𝑥 = 𝑦 ⊕ 𝑧 ⇔ 𝑦 = 𝑥 ⊕ 𝑧.

What this means is that, if we knew the randomly generated 5 byte key, we could xor the key with
the encrypted text to recover the flag. The only issue is that we don’t know the key. However, we do
know some information about the flag which we can use to get the key: the flag format GPNCTF{}.

Leveraging the flag format to recover the key
The encrypted text is produced by repeating the key in 5 byte blocks, that is character 𝑖 of the output
is character 𝑖 of the flag xor’d with character 𝑖%5 of the flag. The important part to know is that the
first five characters of output is output[:5] = FLAG[:5] xor key. Since we just showed that xor is
self inverting, it follows that key = output[:5] xor FLAG[:5], but we know the two values on the
right, output from FLAG.enc, and FLAG[:5] since we know all flags start with GPNCT. Therefore, we
have an exploit.

Crafting our exploit
Recall that our FLAG is encrypted as since we know all flags start with GPNCT. Therefore, we have an
exploit.

Crafting our exploit
Recall that our FLAG is encrypted as
1. Convert the ASCII characters to bytes
2. xor the flag with the key in blocks of 5 characters,
3. convert the corresponding ints to bytes, and
4. convert the list of bytes to hex.

Therefore, to decrypt, we
1. Convert from hex to a list of bytes
2. xor the first five bytes of output with GPNCT to recover the key
3. xor the output with the key in blocks of 5 characters,
4. convert the corresponding ints to ASCII

Implementing this, we get the following solve script:

from pwn import *

output =
'd24fe00395d364e12ea4ca4b9f2da4ca6f9a24b2ca729a399efb2cd873b3ca7d9d1fb3a66a9b73a5b43e8f3d'

output_bytes = bytes.fromhex(output)
print(output_bytes)

flag_fragment = b'GPNCT'
output_fragment = output_bytes[:5]

key = []
for i in range(len(flag_fragment)):
 key += [flag_fragment[i] ^ output_fragment[i]]
print(key)

flag = []
for i in range(len(output_bytes)):
 flag += [output_bytes[i]^key[i%len(key)]]
print(''.join(map(chr, flag)))

which gives a key of [149, 31, 174, 64, 193] and a flag of
GPNCTF{One_T1me_p4ds_m4y_n3v3r_b3_r3u53d!!!}

	Never Gonna Let You Crypto - GPN CTF 2024
	Challenge Overview
	Reading through the challenge
	chall.py
	FLAG.enc

	Leveraging properties of xor
	Leveraging the flag format to recover the key
	Crafting our exploit
	Crafting our exploit

